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In a nutshell

Self-supervised speech models (S3Ms) leverage unlabeled data to improve Strong empirical evidencel!l BUT...
performance and data efficiency on a supervised downstream task.
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Bob: So, what do you find from the analysis of ten S3Ms?

Alice: We use canonical correlation analysis (CCA) to study word-level pronunciation, syntax, and semantics and find that intermediate layers typically encode the most linguistic content.
Bob: Which intermediate layers?

Alice: That depends on the form of the pre-training objective. S3Ms that share pre-training objectives have similar trends, even if their pre-training data and model sizes are different.
Bob: And what about frame-wise analysis?

Alice: We find that central frames in a word segment encode the most word-identifying content, whereas edge frames contain little to none. We also propose a simple peak-detection
algorithm using frame-level representations, which is effective at unsupervised word segmentation, surpassing more complex baselines.

Bob: Got it, and in that case, is mean-pooling still an optimal choice?
Alice: Thanks for asking! We study that by evaluating acoustic word discrimination on S3M representations and find that different S3Ms vary in their robustness to mean-pooling.
Bob: Interesting, I am excited to read the paper! What else will I find?

Alice: You'll find our study of utterance-level representations and how they encode non-trivial semantic content. You'll find the effects of the data domain on the outcome of task-
based evaluations and how the layer-wise trends from task-based studies agree with those from our task-agnostic CCA studies. You'll find many plots studying these various
phenomena and maybe you can spot some interesting takeaways we might have missed!
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